When does the complement of the annihilating-ideal graph of a commutative ring admit a cut vertex?

نویسندگان

  • A. PARMAR Saurashtra University, Rajkot, India
  • S. VISWESWARAN Saurashtra University, Rajkot, India
چکیده مقاله:

 The rings considered in this article are  commutative  with identity which admit at least two  nonzero annihilating ideals. Let $R$ be a ring. Let $mathbb{A}(R)$ denote the set of all annihilating ideals of $R$ and let $mathbb{A}(R)^{*} = mathbb{A}(R)backslash {(0)}$. The annihilating-ideal graph of $R$, denoted by $mathbb{AG}(R)$  is an undirected simple graph whose vertex set is $mathbb{A}(R)^{*}$ and distinct vertices $I, J$ are joined by an edge in this graph if and only if $IJ = (0)$. The aim of this article is to classify rings  $R$ such that $(mathbb{AG}(R))^{c}$ ( that is,  the complement of $mathbb{AG}(R)$)   is connected and admits a cut vertex.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

when does the complement of the annihilating-ideal graph of a commutative ring admit a cut vertex?

the rings considered in this article are  commutative  with identity which admit at least two  nonzero annihilating ideals. let $r$ be a ring. let $mathbb{a}(r)$ denote the set of all annihilating ideals of $r$ and let $mathbb{a}(r)^{*} = mathbb{a}(r)backslash {(0)}$. the annihilating-ideal graph of $r$, denoted by $mathbb{ag}(r)$  is an undirected simple graph whose vertex set is $mathbb{a}(r)...

متن کامل

The sum-annihilating essential ideal graph of a commutative ring

Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...

متن کامل

On the girth of the annihilating-ideal graph of a commutative ring

The annihilating-ideal graph of a commutative ring $R$ is denoted by $AG(R)$, whose vertices are all nonzero ideals of $R$ with nonzero annihilators and two distinct vertices $I$ and $J$ are adjacent if and only if $IJ=0$. In this article, we completely characterize rings $R$ when $gr(AG(R))neq 3$.

متن کامل

the sum-annihilating essential ideal graph of a commutative ring

let $r$ be a commutative ring with identity. an ideal $i$ of a ring $r$is called an annihilating ideal if there exists $rin rsetminus {0}$ such that $ir=(0)$ and an ideal $i$ of$r$ is called an essential ideal if $i$ has non-zero intersectionwith every other non-zero ideal of $r$. thesum-annihilating essential ideal graph of $r$, denoted by $mathcal{ae}_r$, isa graph whose vertex set is the set...

متن کامل

The annihilator-inclusion Ideal graph of a commutative ring

Let R be a commutative ring with non-zero identity. The annihilator-inclusion ideal graph of R , denoted by ξR, is a graph whose vertex set is the of allnon-zero proper ideals of $R$ and two distinct vertices $I$ and $J$ are adjacentif and only if either Ann(I) ⊆ J or Ann(J) ⊆ I. In this paper, we investigate the basicproperties of the graph ξR. In particular, we showthat ξR is a connected grap...

متن کامل

The sum-annihilating essential ideal graph of a commutative ring

Let R be a commutative ring with identity. An ideal I of a ring R is called an annihilating ideal if there exists r ∈ R \ {0} such that Ir = (0) and an ideal I of R is called an essential ideal if I has non-zero intersection with every other non-zero ideal of R. The sum-annihilating essential ideal graph of R, denoted by AER, is a graph whose vertex set is the set of all non-zero annihilating i...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 2  شماره 2

صفحات  9- 22

تاریخ انتشار 2015-11-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023